RADIATION TYPES - Alfa particles: positive electrical charges (helium/proton) - Beta particles: negative charges - Gamma rays: no electrons: - Gamma rays are similar to x-rays, but gamma rays originate in the atomic nucleus and x-rays from the peripheral electrons. - The major goal of radiation: - Arresting cell mitoses by interfering with DNA synthesis - Destroy the reproductive integrity of a neoplasm - The tissue destruction by ionizing radiation is accomplished by free radicals. - Teletherapy: - Remote distance delivery - Brachytherapy: - Near distance delivery | | <u>Isotope</u> | Half-
life | Type
of
radia
tion | Ener
gy | Half-
value
layer | 10% energy
transmission
opposite
side(mm(| Advantages | Disadvantages | |------|-------------------|---------------|-----------------------------|----------------------|-------------------------|--|---|---| | | Cobalt
60 | 5.26
years | Gam
ma | 1.17,
1.33
MeV | 11
lead | lead 25 | Long half- life
Good tissue penetration | High energy restricts shielding from personnel | | | Iodine
125 | 60.2
days | Gam
ma | 27-35
KeV | 0.025
lead | lead 0.09 | Easy to shield, appropriate
tissue penetration, seeds
permit individualized
.plaque design | Shorter half-life | | | Palladi
um 103 | 17
days | Gam
ma | 21
KeV | 0.008
lead | lead 0.5 | .As Iodine
Higher dose rate may be
radiobiologically
beneficial | Very short half-life | | | Iridiu
m 192 | 74.2
days | Gam
ma | o.38
MeV | lead 2.7 | Lead 18 | Good tissue penetration
,ease in customizing
plaque design. | Easier to shield than Co, but not as easy as the others | | | Gold
198 | 3
days | Gam
ma | 0.420
MeV | lead 5 | lead 2 | Good energy | Short half-life | | | | 366
days | Beta | 3.5
Mev | lead 0.7 | lead 1 | Easily shielded, sharper dose falloff | Can only be used for thinner
tumors(5 mm or less)due to
limited tissue penetration | | 9/1/ | 159 | 1 | 1 | 1 | 19 | 117 | 111111 | 14311 | ### NON-SURGICAL TOPICAL THERAPY OF CONJUNCTIVAL TUMORS: IHAB SAAD MAHMOUD OTHMAN, MD, FRCS PROFESSOR OF OPHTHALMOLOGY CAIRO UNIVERSITY DIRECTOR, EYEWORLD HOSPITAL, GIZA, EGYPT ## OCULAR SURFACE SQUAMOUS NEOPLASIA (OSSN) - Premalignant and malignant alterations in the epithelium of conjuctiva or cornea - Various terms in literature: - Squamous cell carcinoma - Conjunctival intraepithelial neoplasia - Conjuctival dysplasia - Ocular surface epithelial dysplasia - Conjuctival squamous intraepithelial neoplasia - Classic presentation - Adult - Caucasian males - Excessive sun exposure | | ADJUVANT' | THERAPY: WH | Y AND WHEN | | |--|-------------------------|-----------------------------|-------------------------------------|--| | | Pathology | Туре | Treatment | | | | Resection edge positive | Dsyplasia or CIN | Observation or topical chemotherapy | | | | Resection edge positive | Invasive SCC | Re-excision | | | | Resection base positive | Localized | Cryotherapy | | | | Resection base positive | Diffuse | Plaque brachytherapy | | | | | Patient prone to recurrence | Immuno-modulation | | | | | | Honavar 2019 | | # PRINCIPLES OF MANAGEMENT Identify extent (edge) Test motility Provisional diagnosis Investigations Have a clear plan about management # ORBITAL VASCULAR LESIONS 6 to 12 % of all orbital neoplapsms Vascular hamartomatous lesions: Cavernous hemangioma Cavernous lymphangioma Cavernous lymphangioma Orbital varix Hemangiopericytoma Angiosarcoma Intrvascular papillary endothelial hyperplasia A/v fistula vascular leiomyoma, angiolymphoid hyperplasia with eosinophilia Kimura disease