# Fluidics from old to enhanced fluidics







# Foot Switch













# The balance between inflow( irrigation fluids) and outflow (aspiration and leakage )

# Fluidics

















# Bottle height

### 30 cm(12 inches)

### 15 cm(6 inches)

### 11 mmHg





### 60 cm(18 inches)



### 22 mmHg

### 44 mmHg





Experts eye centre



- Control AC. IOP.
- Do not over pressurise (stress zonnules, tense posterior capsule, compromise chorioretinal and optic nerve blood flow, aqueous misdirection to vitreous and excessive wound leakage).

## Bottle Height







# Flow Rate (Aspiration Rate)

## **Attraction force**

The rate at which the fluids moves through the aspiration line (CC/min).

### Changes in FR should be accopanied by changes in bottle height











## Holding force

The negative pressure created in the aspiration line after occlusion (mmhg).

### To accelerate vacuum flow rate should be increased

## Vacuum



### Linear and Fixed(Pannel)









### Peristaltic Pump(FR based)

Tubing is compressed in a rotary motion by a series of rollers that have been placed around a wheel.







# Vacuum and Flow pumps

- Vacuum pump FR is affected by bottle height as it is an open circuit from bottle to casset and only interrupted by occlusion. Increasing bottle height leads to increase in FR, and not IOP.
- This not the case in flow pump as the circuit is interrupted by the pump itself. So elevation of the bottle does not affect the FR level. And will increase IOP.





## Vacuum and Flow pumps

level at the tip.

 Both require complete occlusion of the aspiration port to build up vacuum to the maximum preset





- The measurement of how fast vacuum builds up.
- Rise time is directly related to aspiration flow rate.
- The faster the aspiration flow rate the shorter the rise time.

### • Dynamic Rise + or - (Alcon). Occlusion mode (J&J).

surgery, Barry S. Seible, MD, 2005





- Vacuum preset.
- Pump speed.
- Aspiration port size.
- Aspiration tube diameter.
- Degree of tip occlusion.
- Foot pedal position in linear control.

## Vacuum









## AC. Handpiece 44 mmHg











# **Inflow (irrigating fluid) =**

# Balance

### **Outflow (FR and wound leakage)**







### khaled A. Khalifa

OZil





# How to eliminate surge

- Venting.

- g bottle height.
- Aching incision e tip and sleeve.





### Main target

## Increase Inflow& decrease Outflow





### The evolution of fluidics in phaco

AC ise stabil May



**Pressurized fluidics** 

Uses air pump to achieve irrigation pressure in bottle<sup>5</sup>



**Active Fluidics<sup>™</sup> Technology** 

Uses compression plates to maintain surgeon-selected target IOP<sup>1,5</sup>



Active Fluidics<sup>™</sup> Technology with ACTIVE SENTRY<sup>®</sup> Handpiece

Combines Active Fluidics<sup>™</sup> Technology with fluidics pressure sensor in handpiece<sup>1,2</sup>



fo

perfect

Not

**Experts** eye centre





# How to eliminate surge





## How to eliminate surge





Infiniti and Intrepid 0.062" ID (1.57 mm)

Intrepid Plus 0.057" ID (1.45 mm)



Small bore aspiration tubing

**Centurion FMS** 0.048"ID (1.21mm)

- Decreased Compliance
  - ✓ Reduced Post-Occlusion Surge
  - ✓ Allows Higher Vacuums





# How to eliminate surge?? ———modern solutions

# **ACTIVE FLUIDICS SYSTEM**







### FLUIDICS MODULE AND FMS





**CENTURION® FMS** 



## **Stellaris Elite** (AC. Stability) **Adaptive Fluidics<sup>TM</sup>**





Chamber stability is a critical factor for successful lens extraction. The proactive approach of Adaptive Fluidics<sup>TM</sup> monitors and responds to the vacuum you command to let you focus on the surgery—not the system.



Vacuum (mmHg)

Proactively increases infusion pressure when more vacuum pressure is used to maintain consistent chamber stability.



## Adaptive Fluidics<sup>TM</sup> Baseline Infusion Pressure BIP



Air current



## **Adaptive Fluidics**<sup>TM</sup> **Compensation Factor CF**

| Chop       |                                    |                          | Save                    | Save As       |  |
|------------|------------------------------------|--------------------------|-------------------------|---------------|--|
| Ultrasound | Infusion Vacuum                    | n Foot Control           | Fluidics Compensation I | Factor        |  |
|            | Infusion Type Pressurized <b>T</b> |                          |                         |               |  |
|            | Infusion Units                     | mmHg 🔻                   | 1 (Lowest)              |               |  |
|            | Infusion Control                   | Auto On/Off 🔻            | 2 (Low)                 |               |  |
|            | Indusion control                   | Addo Oliyoli             | 3 (Moderate)            |               |  |
|            | Global O IV Pole Height 22         |                          | 4 (High)                |               |  |
|            | Adaptive Fluidics                  | Enabled O                | 5 (Highest)             |               |  |
|            | Global 💽 F                         | luidics Compensation Fac | ctor 2 (Lo              | w) 🔻          |  |
|            | Max IV Pole Height cm              | 80                       | Fill Time (seconds)     | 25            |  |
|            | Patient Eye Level                  | 0 cm (0 in) 🔻            | Container Type          | 500 ml Bottle |  |
|            | Global Off Delay r                 |                          |                         |               |  |

### Pressure Change with various Compensation Factor (CF)



•With Dynamic Infusion CF is 3, the infusion pressure increase proportionally from 0 to 55mmHg when vacuum change from 0-600mmHg Therefore

55mmHg >> 600mmHg

+++ Vacuum. +++infusion pressure

0

-









## Adaptive Fluidics™ Compensation Factor CF

| 0                | vacualit initing |     |     |     |     |     |  |
|------------------|------------------|-----|-----|-----|-----|-----|--|
|                  | 100              | 200 | 300 | 400 | 500 | 600 |  |
| FC1              | 6                | 12  | 18  | 23  | 29  | 35  |  |
| FC2              | 8                | 15  | 23  | 30  | 38  | 45  |  |
| → FC3            | 9                | 18  | 28  | 37  | 46  | 55  |  |
| <del>─</del> FC4 | 11               | 22  | 33  | 43  | 54  | 65  |  |
| FC5              | 13               | 25  | 38  | 50  | 63  | 75  |  |

 With Adaptive Fluidics<sup>™</sup>, infusion pressure increases as vacuum increases which may result in the maintenance of a more stable pressure in the eye throughout the surgery.

### Vacuum mmHg



# How to eliminate surge

# ACTIVE FLUIDICS COMPONENT **Adaptive Fluidics**





# **HARGE**







