RIGHT INTERVENTION AT THE RIGHT TIME
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Ocular surface diseases (pterygium, keratoconus, infectious keratitis,
dry eye, etc.) affect the cornea/conjunctiva and are major causes of

ocular morbidity .
For example, keratitis is leading cause of blindness globally .

These conditions often require multiple examination modalities (slit

lamp, imaging, clinical tests) due to complex anatomy .
Early and accurate diagnosis is critical to prevent vision loss and
improve quality of life.

Al promises to enhance detection and screening efficiency.



Al use began in retinal diseases: the first FDA-approved Al device

(2018) was for diabetic retinopathy .

Al has since been applied to AMD, glaucoma, and cataracts.

Recent efforts extend Al to ocular surface.
These models learn subtle image features beyond human perception.

Includes algorithms (support vector machines, random forests, etc.)

Involves neural networks trained on large datasets .



Machine learning involves algorithms that allow computers to learn
from and improve their performance on a task over

time.

The system learns patterns from input data to make decisions or

predictions.

Spam filters in email learn to recognize spam messages

based on patterns in past emails.

Supervised learning, unsupervised learning, reinforcement

learning.
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Deep learning is a subset of ML that uses
with many layers (hence "deep") to model complex patterns in large
volumes of data.

It is especially powerful in tasks like :

, and

Example: Self-driving cars use deep learning to detect pedestrians,
signs, and obstacles.
Key technology: Deep neural networks (DNNs), convolutional neural

networks (CNNSs), recurrent neural networks (RNNs).




ML is the broader field focused on learning from data.

DL is a specialized, more powerful approach using layered neural

networks, especially for unstructured data like images and text.
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® Unlike retinal imaging (standard fundus photos), ocular surface
assessment uses . anterior segment photos, topography

maps (Pentacam), slit-lamp microscopy, and tear-film metrics .

O in image quality (illumination, eyelid position), and

(e.g. pterygium severity)

® Al can standardize interpretation by learning consistent image

features, potentially improving inter-observer agreement.



A typical Al workflow involves: collecting and curating a large dataset
of ocular surface images, excluding low-quality data, then splitting

into : , and sets .

Deep neural networks (e.g. CNNs) are trained on the labeled
images to learn features. Models are iteratively refined on the
validation set, then evaluated on held-out test images to measure

daccuracy .

Model performance is (accuracy, sensitivity, specificity)

before considering clinical deployment.
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Various imaging devices are used in OSD diagnosis : anterior
segment photography (pterygium), corneal topography/tomography
(keratoconus), slit-lamp microscopy/confocal (keratitis), and

meibography/interferometry (dry eye).

Al algorithms have been to

automatically detect disease patterns .
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Background

is a fibrovascular growth of conjunctiva onto the cornea,

commonly linked to UV exposure (seen in outdoor workers) .

It causes redness, irritation, induced astigmatism and, in advanced

cases, vision encroachment .

Grading (size/vascularity) is usually done subjectively.

Early detection allows timely management before vision is

threatened.




Early Al approaches used image processing (color segmentation,

Hough transforms) with ~85-89% accuracy .

Deep learning (CNN) systems now achieve higher performance. For

example, “Pterygium-Net” detected pterygium with 95% sensitivity

and 98.3% specificity.

An EfficientNet-B6 based model classified images into :
, and

with ~94.7% accuracy .

These Al tools closely match diagnoses, offering objective

screening especially useful in primary care or underserved areas .



Predictive Al aids surgical

A DL model analyzing pre-op images predicted (80%
specificity) .
Patients flagged as high-risk could receive (e.g., mitomycin C,

graft) or closer monitoring.

Al may also assist . automated measurements
of pterygium size could standardize excision margins and graft sizing.
Overall, Al-driven risk stratification can improve surgical outcomes and
resource allocation.

Al can quantify immuno-histochemistry on excised pterygium tissue,

improving reproducibility of



is a progressive non-inflammatory thinning of the

cornea leading to a cone-shaped protrusion and irregular astigmatism.

Advanced KC causes significant vision distortion, but early (forme

fruste) cases may be hard to detect clinically .

Diagnosis relies on corneal tomography (Pentacam) to detect subtle
curvature and thickness changes. Early identification is key (for timely

collagen cross-linking).

Al algorithms can analyze corneal maps to
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Multiple Al models have been trained on corneal
topography/tomography data. They achieve very high accuracy for

established KC: reported models have ~99% accuracy .
Since the signs of intermediate and advanced KC are quite common,
clinical diagnosis is straightforward.
KC suspect (KCS), forme fruste KC (FFKC), and
sub-clinical KC (SKC).
Al approach increases its sensitivity up to 97.2% in abnormal eyes, eyes

with KC, those with SKC, and normal eyes respectively.

The diagnostic accuracy of the Al approach was further improved by

including the posterior corneal surface and corneal thickness data



Predictive Al tools may . For example,
deep learning on sequential corneal maps can predict which eyes

will worsen, informing the timing of interventions (e.g. cross-linking).

Al could assist in : modeling corneal behavior to

optimize cross-linking protocols .

For contact lens and IOL planning, Al could simulate corneal

refractive changes to optimize lens design for keratoconic eyes.

Post-keratoplasty, Al may aid refractive management by



Background

Infectious keratitis (IK) is corneal infection by bacteria, fungi, viruses or

protozoa, causing pain, photophobia, redness, and ulcers .
It is a significant global health issue (5th leading cause of blindness).
Delays in correct diagnosis can lead to vision loss.

Distinguishing etiology (bacterial vs fungal vs viral) usually requires

culture, which is slow and often in-conclusive.

Clinical signs overlap among pathogens.

Rapid, accurate tools are needed for appropriate treatment.




Al models have been developed to assist IK diagnosis. For example, one
study trained various CNNs on . the best model
(EfficientNet B3) had 70.3% accuracy (sens 74%, spec 64%) .

Another DL model on achieve sensitivity 91.9%,

specificity 98.3% for general keratitis detection .

Al has been applied to sub-type identification: models achieved 80-98%
accuracy in keratitis, and

bacterial vs fungal IK .

These results clinician-level performance, suggesting Al could
aid




Background

Dry eye is a chronic condition of the tear film and ocular surface, leading

to irritation, fluctuating vision, and inflammation .

It is highly prevalent (especially in older adults) and multi-factorial (tear
deficiency, meibomian gland dysfunction, environment) .

Patients suffer from discomfort, light sensitivity, and reduced quality of life.

Diagnosis is challenging due to variable symptoms and lack of a single
definitive test .

Standard exams include tear breakup time (TBUT), Schirmer’s test,
corneal staining, and meibography.

Al offers the potential for objective, quantitative assessment of these
factors.




® Al has been used to (infrared images of eyelid

®

glands). With 95.6% accuracy in grading MG drop-out , significantly

better than human raters.
DL on confocal images can diagnose obstructive MGD: with 92.1%
sensitivity and 98.8% specificity

These Al systems provide rapid, objective scoring of gland health,

aiding dry eye diagnosis and grading.
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DL can detect tear film break-up spots on fluorescein videos to screened
dry eye with 83% sensitivity and 95% specificity .

DL can use video of blinking and TBUT to diagnose dry eye (accuracy
83%), demonstrating automated blink analysis as a new method.

Also, Al use AS-OCT images to segment tear meniscus height, reducing
analysis time dramatically (100x faster than manual).

It achieved 84.6% accuracy for dry eye detection, out-performing traditional

slit-lamp staining tests.



Al uses baseline data (imaging, patient factors) to forecast outcomes

(disease progression, treatment response).

Al models can learn from cohorts to predict recurrence (e.g.

pterygium) or severity (e.g. keratoconus).

This approach shifts care from reactive to pro-active, allowing

pre-emptive measures.



Al has the potential to by quantifying disease
severity and predicting outcomes.

This means using Al-derived metrics (gland loss score, topography
irregularity) to guide treatment intensity.

For instance:
- A higher Al-detected pterygium severity score might indicate earlier surgery.

- A high-risk keratoconus progression score might prompt prophylactic CXL.



Many Al studies use limited, single-center datasets.
Models may not generalize to diverse populations or imaging systems .
External validation on varied data is essential.

Deep learning models are often “black boxes.”
Clinicians must understand the basis of Al recommendations (e.g.,
highlight image areas driving a diagnosis) to trust them.

Practical deployment requires seamless
integration with existing imaging platforms. Clinician training and
user-friendly interfaces are needed for adoption.

Patient privacy (image data security),
informed consent for Al use, and responsibility for errors must be
addressed.



Al can empower non-specialists to screen OSD remotely.

Mobile clinics could use Al to triage dry eye or
MGD from captured images, referring only positive cases to
ophthalmologists. This extends specialist reach to underserved areas.
are underway to test such integration, assessing both
efficacy and user acceptability.
. Examples: Al-enabled slit-
lamp attachments, cloud-based analysis portals, or smartphone apps for

preliminary screening




- Multicenter collaborations will improve model robustness.

- Combining imaging with patient history, biomarkers, and wearable sensors could yield more

accurate predictions.

- Advances in computing may allow live Al feedback (during surgery or examinations).

- Surgeons could use Al overlays on the microscope to highlight pathology.

- Wearable devices (smart contacts, glasses) may monitor eye parameters (humidity, blink

completeness), with Al algorithms detecting early dryness or inflammation.

- As evidence grows, governments will define standards for Al validation.

- Ophthalmology societies may provide guidelines on clinical use of Al tools.



Recent research shows Al can accurately and ocular
surface diseases, achieving
Al offers : assessments, potentially improving
early diagnosis and care.
In underserved settings, Al-based screening could expand access to
eye care.
However, challenges in data quality, validation, and integration
remain.

between clinicians and Al specialists are needed
to ensure safe, effective adoption.
Ophthalmologists should about Al advances.

By standardizing assessments, Al can help ensure patients receive
the
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