

## Introduction

- Ultrasound Biomicroscopy (UBM) has brought about improvements in viewing the anterior chamber, allowing for a high level of spatial resolution and objective measuring capacity of the anterior chamber structures.
- UBM is a contact exploration technique with an immersion system which requires patients to be in recumbent position.

### Introduction

 Optical coherence tomography (OCT) is a noncontact high resolution (2 to 20 μm) imaging technology that provides detailed cross-sectional images (tomography) of internal structures.



#### **Principle of UBM**

Ultrasound biomicroscopy (UBM) is a recent technique to visualize anterior segment with the help of high frequency ultrasound transducer.

UBM is capable to show the structures of anterior segment that are relevant to glaucoma and provides a system of measurements.

#### **Principle of UBM**

Fluid is required to produce a coupling medium between the transducer and the eye.

The main rule for making fine probe movements is "if the image is getting better, keep going; if it is getting worse, go to the opposite way".

# **AS-OCT**

### **Principle of OCT**

## AS-OCT at 1310 nm wavelength of light is better suited for AC angle imaging due to:

#### **\*\*** Reduced scattering

Thus ensures better penetration through ocular structures like the sclera and the iris and hence a more detailed AC angle morphology.

#### **\*\*** More dissipation/absorption

The higher (1310 nm) wavelength light is strongly absorbed by water in ocular media(vitreous) and therefore, only 10% of the light incident on the cornea reaches the retina causing no damage to the retina

### **Principle of OCT**

The high-speed imaging helps in various ways:

- 1. Reduces examination time
- 2. Eliminates motion artifacts
- 3. Enables imaging of dynamic ocular events
- 4. Allows for rapid survey of relatively large areas.



single mode, only a single image will be obtained at the desired angle.



Double mode takes images at the preset angles of 20 to 200 &160 to 340



Quad mode ...... 4 cross-sectional images are taken at o to 180, 45 to 225, 90 to 270, and 135 to 315 degrees, respectively

#### Resolution modes

| Standard resolution imaging                                               | High/enhanced resolution imaging                    |
|---------------------------------------------------------------------------|-----------------------------------------------------|
| Broader view of AS<br>16 mm width /6 mm depth                             | More detailed imaging<br>10 mm width/3 mm depth     |
| Full overview of AS:<br>Cornea, anterior chamber, iris<br>and both angles | Cornea and ant. segment needing detailed evaluation |
| 256 scans 0.125 seconds                                                   | 512 scans 0.250 seconds                             |



#### (1) The caliper tool

![](_page_7_Figure_1.jpeg)

#### (B) The flap tool

![](_page_7_Picture_3.jpeg)

#### (3) The iridocorneal angle tool

![](_page_8_Picture_1.jpeg)

#### (4) The chamber tools:

- \* Angle to angle distance.
- \* Central corneal thickness. \* Anterior chamber depth.
  - \* Crystalline lens rise

#### **Applications of AS-OCT in Cornea**

- 1. LASIK
- 2. DSAEK
- 3. Dystrophies and degenerations
- 4. Corneal inflammatory and infltrative disorders
- 5. Keratoplasty
- 6. Keratoconus
- 7. Intacs
- 8. Descemet's detachment

![](_page_9_Figure_1.jpeg)

The use of the "flap tool" in post-LASIK cases to measure the precise thickness;

![](_page_9_Picture_3.jpeg)

![](_page_10_Picture_1.jpeg)

\* Arrow 1 points to guttae, arrow 2 to the area of intrastromal fluid. Bars correspond to 100  $\mu m.$ 

![](_page_10_Figure_3.jpeg)

AS-OCT image of the pterygium shows a dense, hyperreflective, fibrillary subepithelial lesion that is between the corneal epithelium and Bowman's layer (arrow)

![](_page_11_Picture_1.jpeg)

Ocular surface squamous neoplasia pre and post treatment.

![](_page_11_Picture_3.jpeg)

Conjunctival melanoma

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

#### Descemet membrane detachment

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

#### **Applications of AS-OCT in Glaucoma**

- To study the normal anatomy and physiology.
- For screening of the spectrum of angle-closure glaucoma.
- To study mechanism of malignant glaucoma.
- To test the efficacy of laser peripheral iridotomy.
- To test the patency of glaucoma drainage device.

#### **Angle Opening Distance**

Angle opening distance is calculated as the perpendicular distance measured from the TM at 500  $\mu$ m anterior to the scleral spur to the anterior iris surface.

#### Trabecular iris angle

An angle measured with the apex in the iris recess and the arms of the angle passing through a point on the TM 500  $\mu$ m from the scleral spur and a point on the iris perpendicularly

![](_page_15_Picture_3.jpeg)

![](_page_15_Figure_4.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_17_Picture_1.jpeg)

#### Indentation UBM

![](_page_17_Picture_3.jpeg)

![](_page_18_Picture_1.jpeg)

#### Phacomorphic glaucoma

![](_page_18_Picture_3.jpeg)

#### **Bleb morphology**

1. it is an indicator of bleb function and a predictor of blebrelated complications such as bleb leak, blebitis, and blebrelated endophthalmitis.

2. Bleb morphology indicates the function of the filtration shunt created by the trabeculectomy procedure and guides the ophthalmologist in performing interventions such as needling and suture lysis in order to optimize shunt function.

#### **Bleb morphology**

3. ASOCT has been used to image trabeculectomy bleb to provide information about internal structure that is not available at the slit lamp.

4. It is able to provide clear images of the bleb wall, cavity, flap and ostium as displayed below.

 Successful blebs display conjunctival thickening as a hallmark of success, regardless of degree of bleb elevation.
 This reflects facility of transconjunctival aqueous flow.

#### **Bleb morphology**

5. Highly elevated blebs sometimes display marked conjunctival thickening and only a small cavity.
6. In failed blebs, ASOCT is particularly useful in imaging failed blebs to demonstrate the level of failure.
7. Ostial closure, flap fibrosis and presumed episcleral fibrosis in the absence of the former two situations are all clearly demonstrated.

#### **Bleb morphology**

8. In the early postoperative period, a failing bleb with a closely apposed scleral flap may be resuscitated by suture lysis, resulting in a more expanded bleb.
9. It can also image the intrascleral lake and implant used in nonpenetrating glaucoma surgery (deep sclerectomy)

and glaucoma drainage devices

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_23_Picture_1.jpeg)

#### To summarize: .....

| Characteristics         | UBM                          | AS-OCT                     |
|-------------------------|------------------------------|----------------------------|
| Image property          | Acoustic impedance variation | Refractive index variation |
| Axial resolution (um)   | 30                           | 5                          |
| Lateral resolution (um) | 60                           | 10                         |
| Penetration depth (mm)  | 6                            | 1                          |
| Vectors/sec             | 1000                         | 50000                      |
| Coupling mode           | Fluid                        | Air                        |

![](_page_24_Picture_1.jpeg)